Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Pediatr Dent ; 47(3): 89-95, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37143426

RESUMO

Bisphenol A (BPA) from dental materials may be linked to children's health issues. This study aimed to assess the release of BPA from commercially available 3-dimensional (3D)-printed resin materials and evaluate BPA-related apoptotic effects on human periodontal ligament cells and gingival fibroblasts. Commercially available 3D-printed resin materials for prosthodontic use were selected as follows: NextDent C&B MFH (3D Systems, Rock Hill, SC, USA), DIOnavi-P. MAX (Dio Co., Busan, Korea), and DIOnavi-Denture02 (Dio Co., Busan, Korea). Identical cuboidal samples (1 cm × 1 cm × 0.5 cm) were printed from the materials and cured. BPA release was assessed using liquid chromatography/mass spectrometry (LC/MS). In addition, human gingival fibroblasts and periodontal ligament cells were exposed to various BPA solutions based on the LC/MS results. Cell Counting kit-8 (CCK-8) and real-time polymerase chain reaction analyses were performed to evaluate BPA-related apoptotic effects. The LC/MS analysis confirmed that none of the 3D-printed resin materials released BPA after curing. Both human gingival fibroblasts and periodontal ligament cells showed lower viability after BPA exposure. Regarding apoptosis-related gene expression, Caspase10 (CASP10) expression in periodontal ligament cells was significantly different in the BPA solutions (p < 0.05). The expression of BAX and Capspase8 (CASP8) in gingival fibroblasts was significantly increased by BPA in a dose-dependent manner (p < 0.05). Within the limitations of this study, the 3D-printed resin materials were not found to release BPA. This finding implies that 3D-printed resin materials are not associated with potential BPA-related risks in children.


Assuntos
Materiais Dentários , Fenóis , Criança , Humanos , Materiais Dentários/química , Fenóis/farmacologia , Fenóis/análise , Fenóis/química , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/química , Apoptose , Teste de Materiais , Resinas Compostas/química
2.
Artif Organs ; 40(8): 727-37, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27187768

RESUMO

Transcatheter aortic valve implantation (TAVI) is a fast-growing, exciting field of invasive therapy. During the last years many innovations significantly improved this technique. However, the prostheses are still associated with drawbacks. The aim of this study was to create cell-seeded biohybrid aortic valves (BAVs) as an ideal implant by combination of assets of biological and artificial materials. Furthermore, the influence of TAVI procedure on tissue-engineered BAV was investigated. BAV (n=6) were designed with decellularized homograft cusps and polyurethane walls. They were seeded with fibroblasts and endothelial cells isolated from saphenous veins. Consecutively, BAV were conditioned under low pulsatile flow (500 mL/min) for 5 days in a specialized bioreactor. After conditioning, TAVI-simulation was performed. The procedure was concluded with re-perfusion of the BAV for 2 days at an increased pulsatile flow (1100 mL/min). Functionality was assessed by video-documentation. Samples were taken after each processing step and evaluated by scanning electron microscopy (SEM), immunohistochemical staining (IHC), and Live/Dead-assays. The designed BAV were fully functioning and displayed physiologic behavior. After cell seeding, static cultivation and first conditioning, confluent cell layers were observed in SEM. Additionally, IHC indicated the presence of endothelial cells and fibroblasts. A significant construction of extracellular matrix was detected after the conditioning phase. However, a large number of lethal cells were observed after crimping by Live/Dead staining. Analysis revealed that the cells while still being present directly after crimping were removed in subsequent perfusion. Extensive regions of damaged cell-layers were detected by SEM-analysis substantiating these findings. Furthermore, increased ICAM expression was detected after re-perfusion as manifestation of inflammatory reaction. The approach to generate biohybrid valves is promising. However, damages inflicted during the crimping process seem not to be immediately detectable. Due to severe impacts on seeded cells, the strategy of living TE valves for TAVI should be reconsidered.


Assuntos
Valva Aórtica/cirurgia , Bioprótese , Próteses Valvulares Cardíacas , Engenharia Tecidual/métodos , Substituição da Valva Aórtica Transcateter , Valva Aórtica/citologia , Reatores Biológicos , Células Cultivadas , Células Endoteliais/citologia , Desenho de Equipamento , Fibroblastos/citologia , Humanos , Poliuretanos/química , Veia Safena/citologia , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...